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Much Ado About Everything
A History of Infinity

Kenneth Baclawski

Abstract
Infinity may seem to be a mysterious notion that most people would
dismiss as being nothing more than a sterile philosophical subject. Yet
infinity has had a profound impact that shaped the modern world. The
history of infinity involved many prominent mathematicians, logicians
and scientists, such as Newton, Leibniz, Gödel and Turing among many
others. Georg Cantor played an especially important role. Throughout
this history, infinity engendered political, philosophical and religious
controversies. In spite of all the difficulties, the infinite has helped
establish a far better foundation for mathematics and computer science.

Zeno and Infinitesimals
INFINITY has been a subject since ancient times, with both Greek and
Indian philosophers realizing that infinity is paradoxical. Zeno of Elea (c.
490—430 BCE) devised a series of paradoxes that challenge our sensory ex-
perience of time and space. The most famous example is Zeno’s Dichotomy
Paradox. Suppose that one wishes to run 8 meters. Before one can run the
full distance, one must first run halfway or 4 meters. But then one must
first move 2 meters, and so on. The conclusion is that one cannot even
start to run, and so Zeno postulated that all motion must be an illusion.

Zeno’s paradox questions whether an infinite process is possible.
Presumably it was paradoxes such as Zeno’s that led to ancient Greek
philosophers having an aversion to both the concept of the void (i.e., nonex-
istence or zero) and the concept of infinity. Aristotle (384–322 BCE) had
less of an aversion to infinity, but even he could not fully accept infinity.
Aristotle distinguished “potential infinity” from “actual infinity,” and he
regarded actual infinity as being impossible.

The Dichotomy Paradox was not resolved until the 17th century
with the development of the calculus by Newton, Leibniz and many other
mathematicians. To resolve Zeno’s paradox, mathematicians proposed that
quantities could “approach zero.” Such quantities were called “infinitesi-
mals,” and what we now call “the calculus” was for a long time called “the
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infinitesimal calculus.” For quantities x and y that vary and depend on each
other, the infinitesimals are written dx and dy. One can then algebraically
manipulate the infinitesimal quantities as if they were ordinary numbers.
For example, one can compute the ratio dy/dx, one of the basic notions of
the Calculus. This notation is due to Leibniz. While Zeno’s paradox was
resolved, it was replaced by another one. How can one compute a ratio of
two infinitesimals when division by zero is meaningless?

Infinitesimals had a poor reputation at the time of Newton and
Leibniz because they had no theoretical basis and could lead to incorrect
results if used improperly. As a result, infinitesimals were the subject of
philosophical, political and religious controversies. Indeed, on August 10,
1632, the Roman Catholic Church judged that infinitesimals were danger-
ous and subversive and announced that they could never be taught or even
mentioned (Alexander, 2014). The philosopher George Berkeley attacked
the calculus in general and ridiculed infinitesimals as “ghosts of departed
quantities” (Berkeley, 1734, p. 59).

Nevertheless, the development of the calculus was a major achieve-
ment. John von Neumann said, “The calculus was the first achievement
of modern mathematics and it is difficult to overestimate its importance.”
However, it took over 200 years for mathematicians to establish a rigorous
foundation for the calculus. In the early 19th century, Bolzano introduced
the (ϵ,δ) definition of the limit that is used today for defining limit pro-
cesses, and infinitesimals have largely been abandoned in practice, although
the Leibniz notation is still in use (Felscher, 2000). Still later, a rigorous
foundation for infinities and infinitesimals was developed in the context of
real analysis. This was accomplished by Edwin Hewitt in 1948 with his
notion of hyperreal numbers (Hewitt, 1948). While the hyperreals are an
interesting concept, they are mathematically equivalent to the (ϵ,δ) ap-
proach, so they are still processes, in other words only potential infinities,
not actual infinities, which were developed nearly a century after Bolzano.

Cantor and the Infinite
The earliest notion of actual infinity was introduced by the Indian

philosopher Surya Prajnapti (c. 4th–3rd century BCE) who classified infini-
ties into many cases, from nearly innumerable to infinitely infinite. While
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none of these cases correspond to the modern notions of infinity, at least
Prajnapti realized that there were many infinities.

It wasn’t until the late 19th century that actual infinities were in-
troduced to mathematics when Cantor developed a theory where infinities
are concrete mathematical objects, not just processes; moreover, they were
objects with many profound, counter-intuitive and even paradoxical prop-
erties. Cantor not only proved some surprising theorems, he also began
a process whereby the field of mathematics was transformed. Further-
more, his ideas were to have a profound significance on philosophy and
allied disciplines (Cantor, n.d.). This transformation was not easy, and it
elicited severe criticisms by some of the most prominent mathematicians,
philosophers and even theologians of the day. Nevertheless, many promi-
nent mathematicians such as David Hilbert were staunch supporters, with
Hilbert proclaiming, “No one shall expel us from the paradise that Cantor
has created” (Hilbert, 1926, p. 170).

Georg Ferdinand Ludwig Philipp Cantor (1845–1918) introduced,
and made fundamental contributions to, some of the most important math-
ematical concepts. These concepts are so basic today that it is hard for
a modern mathematician to realize that they did not exist prior to Can-
tor’s work in the late 19th century. His contributions include: set the-
ory, point-set topology, one-to-one correspondence (bijection), well-ordered
sets, structure-preserving functions and isomorphisms, transfinite numbers,
transfinite induction, the diagonal argument and the continuum hypothe-
sis. The modern definition of a real number is due to Dedekind, but was
based on a limit theorem due to Cantor. The diagonal argument is funda-
mental in the solution to the Halting problem and to the proof of Gödel’s
first incompleteness theorem.

Prior to Cantor, sets were regarded as being too simple and too ob-
vious to merit any study. It was naively assumed that all infinite collections
were equinumerous (that is, of “the same size” or having the same num-
ber of elements). When Cantor showed that there were different infinities,
it came as a considerable shock not only to the mathematical community
but also to philosophers and even theologians! More shocking still was the
discovery by Cantor that set theory as used naively by mathematicians up
to that time is inconsistent.
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Cardinal Numbers
To understand infinity, Cantor realized that one must first under-

stand finite numbers. A cardinal number is used for counting to indicate
quantity. Cardinal numbers have been part of natural languages since an-
cient times. As with sets, numbers were regarded as being too simple and
too obvious to require a rigorous foundation.

Cantor defined a cardinal number as follows. Two sets are said
to have the same cardinal number (cardinality) if there is a one-to-one
correspondence (bijection) between them. The cardinality of a set S is
written |S|. The cardinality of the natural numbers N = {1,2,3, . . .}, is
denoted ℵ0 = |N|. The notation is due to Cantor. A set is countable if it is
either finite or has cardinality ℵ0.

Cantor defined comparison of cardinal numbers by means of the
subset relation. This seems like an obvious choice in retrospect, but along
with the notion of a set, Cantor was the first to rigorously define the subset
relation. Cantor conjectured that if two sets are bijective with subsets of
each other, then there is a bijection between them. Dedekind was the first
to prove it, but the result is now known as the Schröder-Bernstein Theorem.
With this result, one can show that for any two cardinal numbers A and
B either A≤B or B ≤ A, and if both are true then A=B.

Cantor defined addition using the union of disjoint sets and multipli-
cation using the cartesian product. The arithmetic operations are counter-
intuitive when applied to infinite cardinalities: for any infinite cardinal
number A, A+1 = A, A+A = A and A×A = A. The last of these is
especially surprising since it implies that the set of real numbers has the
same cardinality as all of n-dimensional space, for any natural number n,
a fact that even Cantor had difficulty accepting.

Since addition and multiplication cannot produce a larger cardinal-
ity, it seems that there might actually be only one infinite cardinal number.
However, Cantor found a way to construct larger cardinalities; indeed, a
series of cardinalities with no limit. His construction is the power set. For
any set S, the power set of S is the set of all subsets of S. The power set
of S is written P(S), and the cardinality of the power set of S is written
2|S|. Cantor showed that the cardinality of P(S) is always strictly larger
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than the cardinality of S. Because of the importance not only of Cantor’s
Theorem, but also of how it was proved, we discuss it in detail.

The Liar Paradox and Diagonalization
Suppose a person says “I am lying.” If the person is telling the

truth, then the person is lying, but if the person is lying then the person is
telling the truth. The liar paradox was known in antiquity. For example,
Eubulides of Miletus (4th century BCE) reportedly asked “A man says that
he is lying. Is what he says true or false?” (Borghini, 2019).

Cantor’s theorem is simple to state and the proof is an elegant ap-
plication of the liar paradox:

If S is a set and f : S → P(S) is a function then the subset
T = {x ∈ S | x ̸∈ f(x)} is not in f(S).

Proof: If T were in f(S), then there is an element b ∈ S such
that f(b) = T . There are two possibilities for b:
• If b∈ T , then b ̸∈ T (because b∈ T means that b ̸∈ f(b) = T

by definition of T ).
• If b ̸∈ T , then b ∈ T (because b ̸∈ T = f(b) implies that

b ∈ T by definition of T ).
Since neither of these possibilities can occur, there is no such
element b.

An immediate consequence is that there cannot be a bijection between S
and P(S). Consequently, S and P(S) have different cardinalities. Since the
set of singleton sets is a subset of P(S) that is bijective with S it follows
that |S|< |P(S)| (Cantor, 1891).

When S is the set N of natural numbers, its power set P(N) is easily
shown to be the cardinality of the set of real numbers. In this case, Cantor
illustrated his proof with Figure 1. Each entry aµ,ν in Figure 1 is either m
or w, which can be interpreted as specifying whether the subset Eµ of N
contains or does not contain the natural number ν. He then constructs a
subset E0 = (b1, b2, b3, . . .) by the condition: if aν,ν = m, then bν = w and
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if aν,ν = w, then bν =m. It is then clear that E0 cannot be equal to any
of the Eµ. The subset E0 is obtained by modifying the elements on the
diagonal of Figure 1. As a result Cantor’s proof is known as the “diagonal
argument” even though the proof does not admit such a diagram in general.

Figure 1: Cantor’s illustration of his proof that P(N) is uncountable
(Cantor, 1891)

Figure 1 is misleading in some ways. It gives the impression that
the construction of the subset that is not in the sequence is obtained by
some kind of process. This is an accident of the use of a sequence rather
than a function from N to P(N). The general case makes it clear that the
ordering of the natural numbers is not needed for the proof and that there
is no process. Cantor’s theorem applies to any set S, whether S is finite
or infinite, countable or uncountable. It even applies to an empty set. The
set S need not have any special structure such as a sequential ordering.

Another misconception is that Cantor’s theorems are non-
constructive; in other words, it is often claimed that Cantor proved the
existence of numbers or sets without explicitly constructing them. As we
have seen above, Cantor explicitly constructs the set T , so one might won-
der why one would think that Cantor’s proof was non-constructive.

A possible reason for this misconception arises from a theorem in
Cantor’s first paper dealing with set theory (Cantor, 1871). In this paper
Cantor showed that there exist transcendental numbers. A transcenden-
tal number is a complex number that is not an algebraic number, and an
algebraic number is a root of a polynomial with integer coefficients. Be-
cause the set of integers is countable, Cantor could show that the set of
algebraic numbers are also countable. Since the set of complex numbers is
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uncountable by the diagonal argument above, it follows that there must be
transcendental numbers, but this argument does not explicitly construct
one. However, Cantor did explicitly construct a transcendental number in
his paper. Indeed, Cantor’s construction is so explicit that computer pro-
grams have been written that implement Cantor’s construction. In spite
of this, it is common for mathematics textbooks to claim that Cantor only
showed that transcendental numbers exist, without constructing one.

Inconsistency of Mathematics
One of the most important consequences of Cantor’s theorem is

that there is no largest cardinality. For every infinite cardinal number D
no matter how large, there is another 2D that is larger still. It was this
result that led to some theologians refusing to accept Cantor’s work. But it
is not just a theological problem. Suppose that E is the set of everything,
including not only all sets but also all elements of sets, all subsets of all
sets, and so on. Then P(E) is a subset of E, so |P(E)| ≤ |E|; however,
by Cantor’s theorem, |P(E)| > |E|. In effect, this shows that nearly all of
mathematics, since it is founded on set theory, is fundamentally flawed.

Some Christian theologians (and apparently even Pope Leo XIII)
saw Cantor’s work as a challenge to the uniqueness of the absolute infinity
in the nature of God – on one occasion equating the theory of transfinite
numbers with pantheism (Dauben, 1977, pp. 86, 102; Dauben, 1979, pp.
120, 143). However, the theological objections to transfinite numbers ap-
pear to have disappeared relatively quickly. It is known that Cantor sent
a letter to Pope Leo XIII along with some additional articles (Dauben,
1977, p. 85), and one of the theologians who equated transfinite numbers
with pantheism, Cardinal Johann Baptist Franzelin is known to have later
accepted Cantor’s theory as valid, due to some clarifications from Cantor
(Dauben, 1979, chap. 6). One cannot avoid the irony that it was a Catholic
cardinal who accepted Cantor’s cardinals.

Unlike the theological controversy, the objections to Cantor’s work
by mathematicians did not fade away so quickly. Many mathematicians
criticized Cantor’s theory beginning already at the time it was published,
including Henri Poincaré, Hermann Weyl and L. E. J. Brouwer. Leopold
Kronecker regarded Cantor’s work as being predominantly philosophy or
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theology rather than mathematics. The theological controversy that we
just mentioned may have given rise to this impression. Philosophers also
chimed in on the controversy generated by Cantor’s theory. Writing decades
after Cantor’s death, Wittgenstein lamented that mathematics is “ridden
through and through with the pernicious idioms of set theory,” which he
dismissed as “utter nonsense” that is “laughable” and “wrong” (Rodych,
2007).

In spite of Kronecker’s criticism and Wittgenstein’s lament, modern
mathematics is almost entirely based on set theory. Given how fundamen-
tal set theory was (and still is) to mathematics, its inconsistency could have
been a disaster for mathematics. Consequently, resolving the inconsisten-
cies found by Cantor and other mathematicians is an important problem,
and many solutions have been found, including solutions that allow math-
ematicians to continue to use nearly the same techniques for proving theo-
rems that they have been using for centuries. We discuss one such solution
in the next section. Other solutions use fundamentally different logical for-
malisms than the traditional logical formalism. The disadvantage of these
other approaches is that some theorems that can be proven with traditional
techniques might not be provable at all in the alternative formalism, and
if they can be proven the proofs will generally be very different. In spite of
the disadvantage of these other approaches, they do have advantages, and
we discuss these approaches as well.

Resolving the Paradox
The fundamental problem with a naive approach to set theory is

the unrestricted ability to define sets using a property. For example, one
might define the set of entities that contain themselves to be {x | x ∈ x}.
In general, given a property P for which P (x) is either true or false for
any x, one should be able to specify the set {x | P (x)} consisting of all x
for which P (x) is true. Unfortunately, as we have seen, this is inconsistent
because the set E = {x | true} is not meaningful.

Allowing arbitrary set constructions is known as the axiom of un-
restricted comprehension. To resolve the inconsistency of the set of every-
thing, von Neumann proposed that one should distinguish the notions of
“class” and “set” with sets being special kinds of classes (von Neumann,
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1925). Prior to the development of set theory by Cantor, von Neumann and
others, mathematicians regarded class and set as being synonymous, and
this is still the case for informal usage of the terms. In the von Neumann
proposal, unrestricted comprehension is allowed, but only for classes, and a
class is a set only if it can be proven to be an element of some class. Classes
that are not sets are useful, but because they are not sets, one cannot prove
anything about them using the axioms of set theory. Set theory only allows
restricted comprehension. For example, the set of even numbers could be
defined as {x ∈N | x is evenly divisible by 2}. In other words, one is using
a property to restrict a previously known set, namely, N.

The distinction between classes and sets is especially important for
category theory. For example the category of sets is a class and is not a set.
Other examples of such “large” categories include the categories of groups,
rings, fields, topological spaces, etc. One can even define the category
of categories, provided that only categories that are sets are included. A
category that is a set is called a “small” category. Category theory is used
in almost all areas of mathematics, so it is important to ensure that it is
consistent.

Constructivism
Prior to Cantor’s work, many concepts that mathematicians take

for granted today had very different meanings. For example, numbers and
functions were assumed to be defined by analytic expressions. Over time
the kinds of expressions continually became more general, but it wasn’t
until the late 19th century that the modern notions of real numbers and
functions were developed in terms of set theory.

Given this situation one can start to understand why Cantor’s con-
temporaries were uncomfortable with his theories. Indeed, even today the
controversy engendered by Cantor’s work has not entirely disappeared, and
alternative foundations of mathematics have been proposed as a result.
These alternatives go by names such as “constructivism” or “intuition-
ism.” Constructivist set theory differs from Cantor’s set theory in using
intuitionistic instead of classical logic. In the philosophy of mathematics,
constructivism asserts that it is necessary to find (or “construct”) a specific
example of a mathematical object in order to prove that an example exists.
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Contrastingly, in modern mathematics, one can prove the existence of a
mathematical object without “finding” that object explicitly, by assuming
its non-existence and then deriving a contradiction from that assumption.
Such a proof by contradiction is said to be non-constructive, and a con-
structivist might reject it (Bishop, 1967).

The distinction between modern mathematics and constructivism
can also be stated in terms of the law of the excluded middle; namely, for
every proposition, either the proposition or its negation is true. A construc-
tivist does not accept the law of the excluded middle as an axiom that can
be applied in any proof of a theorem. However, there are many variations
of constructivism, depending on what is allowed as a construction, as well
as when the law of the excluded middle can be applied.

Whereas in Cantor’s time many mainstream mathematicians re-
jected Cantor’s work, it is the reverse today. While most mathematicians
accept constructivism as a valid branch of mathematics, they regard it as
being little more than a curiosity. As David Hilbert expressed it, “Tak-
ing the principle of excluded middle from the mathematician would be the
same, say, as proscribing the telescope to the astronomer or to the boxer
the use of his fists.” (Stanford, n.d.)

The transformation of mathematics in the early 20th century has
been called a revolution (Dauben, 1990). The Cantor revolution had such
a profound impact on the mathematical community that one could reason-
ably regard the transformation as being a paradigm shift (Kuhn, 1962).
However, unlike a Kuhnian paradigm shift, the Cantor revolution did not
entirely replace the previous paradigm. As we have noted, constructivism
continues to be an active and accepted paradigm. However, modern con-
structivism was developed within the current mathematical paradigm. Per-
haps the best evidence that the Cantor revolution was a paradigm shift is
that constructivists as early as Bishop (1967) refer to the current mathe-
matical paradigm as being “classical” while constructivism is described as
being a “revolutionary” development (Greenleaf, n.d.), in spite of the fact
that historically it was the other way around.

We now consider yet another controversy that erupted as a result of
Cantor’s work.
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The Uncountability Theorem is Attacked
The controversies surrounding Cantor’s work plagued him through-

out his life and continue even today. When Cantor was still alive but in
a sanatorium in Germany, while World War I was raging, a theorem was
published that seemed to contradict his proof that real numbers are not
countable. This was the Lowenheim-Skolem (L-S) Theorem. One of the
consequences of this theorem is that every consistent theory with countably
many axioms in first-order logic has a model that is countable. In partic-
ular, set theory can be axiomatized so that it is a theory that satisfies
these conditions. It follows that set theory has a countable model. Since
Cantor’s theorem can be stated and proved using set theory and first-order
logic, the L-S theorem appears to contradict Cantor’s theorem. How can a
countable model of set theory contain uncountable sets? This is known as
Skolem’s Paradox.

Skolem himself explained why it is not a contradiction. The reason
why a countable set S can be uncountable in a model M of set theory is
that M does not include enough functions. In particular, M does not have
a bijection between N and the set S.

Given that there are models for set theory for which all sets are
countable (when examined outside the model, of course), one might ask
whether it might be useful for the real numbers to be regarded as being
countable. Indeed, there is such a paradigm; namely, computable numbers.

A real number a is computable if there is a program such that when
the program is given a natural number n, the program computes a rational
number qn such that a ∈ [ qn−1

n , qn+1
n ]. In other words, one can compute the

number a to any desired accuracy.
Any program can be realized with a Turing machine, and it is easy to

prove that the set of Turing machines is countable. Indeed, Turing pointed
this out in the paper where he introduced Turing machines (Turing, 1937).
Therefore the set of computable numbers is countable.1 Since Cantor’s
diagonal argument proves that the real numbers are not countable, there
must be non-computable numbers. One can even define them (e.g., the limit

1Turing actually used a different definition of computable number than the modern
one.
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of a Specker sequence). However, since non-computable numbers cannot,
by definition, be computed, they are not useful in practice, although they
have some theoretical uses.

There are software packages for representing computable real num-
bers as programs. Such a package allows one to perform computations
exactly with transcendental numbers such as π and e, and also to represent
the results of functions exactly. For example, if one has programs for two
numbers x and y, then one can construct programs for computing x+ y,
x ∗ y, √x∗x+y ∗y, and so on, when requested. There are limitations, of
course. For example, one can only test equality of two computable numbers
(or more precisely, the programs for computing them) up to a specified pre-
cision. The RealLib package (Lambov, 2007) and the The CoRN library
(O’Connor, 2008) are examples.

Returning to the question of countability vs uncountability, as noted
above the computable numbers are a countable set. However, if one restricts
functions to be computable, then the computable numbers are not count-
able, i.e., there is no computable bijection between the natural numbers
and the computable numbers.

Liar Liar
We now consider two other theorems that have been proved using a

diagonal argument. A common feature of these theorems is that they not
only use the liar paradox technique but also depend on infinite sets; indeed,
sets consisting of every entity of some kind.

Gödel Incompleteness
By the early 20th century there did not seem to be any limits for

what mathematicians could accomplish. At a conference in 1930, David
Hilbert gave his retirement address in which he forcefully argued, as he
had done for some time, that all mathematical problems can eventually be
solved. Hilbert’s evidence was that no unsolvable problem had yet been
found. Ironically, at the same conference where Hilbert gave his address,
Gödel presented his first incompleteness theorem, showing that there were
limits. Gödel’s theorem did not attract much attention at the time, except
for von Neumann who had a conversation with Gödel at the conference and
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independently obtained Gödel’s second incompleteness theorem.
To explain the incompleteness theorems we need to define a few

terms. Suppose that F is a formal system.

• F is complete if every statement in F can either be proved or dis-
proved. In essence Hilbert argued that every formal system is com-
plete.

• F is inconsistent if there is a statement S such that both S and its
negation can be proved. If a formal system is inconsistent, then every
statement and its negation can be proved, so it is trivially complete.

• F is consistent if it is not inconsistent.

Gödel wanted to find a formal system which was consistent but
incomplete. He attacked this problem by using a liar paradox technique;
indeed, he explicitly cited the liar paradox in his paper. The essential idea
is the following:

Suppose that F is a consistent formal system. Let GF be the
statement “The negation of GF is provable in F .”
• If GF is provable in F then the negation of GF is provable

in F . Therefore, F is inconsistent.
• If the negation of GF is provable in F then GF has been

proven in F . Therefore, F is inconsistent.
Consequently, neither GF nor its negation can be proved in F .

This is certainly very elegant and seems to satisfy Gödel’s objective.
However, GF is not a statement in F since GF refers to itself. What Gödel
had to do was to find a way to refer to GF entirely within the language
of the formal system F . He did this by using what is now called a Gödel
number. His encoding used the arithmetic of the natural numbers (i.e.,
the addition and multiplication operators), and so his theorems require
that F include arithmetic. When GF is encoded, it is called a “Gödel
sentence.” Specifying a Gödel sentence is much harder than one might
expect. Gödel’s first incompleteness theorem shows that GF , when encoded
as a Gödel sentence, can neither be proved nor disproved. It follows that
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any consistent formal system with arithmetic is incomplete. The second
incompleteness theorem shows that the statement “F is consistent” cannot
be proved within F , again assuming that F includes arithmetic. In other
words, one may be able to prove that F is consistent using a different formal
system, but not within F itself.

Gödel’s work was in 1931 so it predated modern computers. Today,
we could use an encoding in computer memory to serve the same purpose
as a Gödel number. For example, one could use the UTF-8 encoding of the
statement. This encoding is a large binary number which can serve as the
Gödel number of the statement.

The proof of the incompleteness theorems require the formal system
to include the arithmetic operations of the natural numbers. Thus the
proof requires being able to reason about every natural number no matter
how large it is. If one limits the arithmetic operations of addition and
multiplication, then the Gödel incompleteness theorems no longer apply
(Willard, 2001).

Turing and Halting
Like Gödel, Turing was motivated by Hilbert’s claim that all math-

ematical problems will eventually be solved. Turing proved that several
problems are algorithmically unsolvable. We will look at one of these prob-
lems; namely, the halting problem. This is the problem of determining
whether a program will halt or continue running forever. This problem was
shown to be unsolvable first by Church and then a year later by Turing. In
his paper, Turing defined what we now know as the Turing machine. Tur-
ing was explicit that he was replacing Gödel’s universal arithmetic-based
formal language with Turing machines. As Turing explained, “what I shall
prove is quite different from the well-known results of Gödel.”

Technically, Turing solved the symbol-printing problem, not the
halting problem. However, the symbol-printing problem is easily seen to be
equivalent to the halting problem (Hamkins & Nenu, 2024). The following
is the essential idea of why the halting problem is undecidable:

Assume that there is a function h with a single argument x,
where x is an algorithmic procedure, such that h halts on ev-
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ery procedure x with the value true if x halts and false if x
does not halt. Define a recursive procedure g by the following
pseudocode:

{ if h(g) then do {} },

where the do {} statement means that the program should loop
forever. There are two possibilities for what happens when h is
applied to g:
• If h(g) halts with value true then g executes the infinite

loop so it does not halt. By definition of h this means that
h(g) halts with value false.

• If h(g) halts with value false then g halts. By definition
of h this means that h(g) halts with value true.

This contradicts the assumption that there is such a function
h. Therefore no such h can be implemented.

Unfortunately, the actual solution is more complicated. The diffi-
culty is that the proof above does not define what it would mean for a
procedure to be the argument of a function. Turing needed to formalize
the notion of a program so that the argument of h is the encoding of the
procedure, not the procedure itself. This is similar to what Gödel had to
do, except that Gödel only needed to encode the text of each statement
along with arithmetic formulas for extracting properties of a formula. Tur-
ing had to invent a way to encode a program so that it could be executed.
He did this with Turing machines. Church used his lambda calculus to
show the same result somewhat earlier than Turing did. Turing machines
and the lambda calculus were subsequently shown to be equivalent.

Just as with Gödel’s theorems, the results of Church and Turing
require infinite sets. Specifically, the function h must be applicable to every
program, no matter how large it is. The halting problem is theoretically
decidable when restricted to programs that run on a deterministic machine
with a fixed, finite memory. Such a machine has only a finite number
of states, so every program on the machine must eventually either halt or
repeat a previous state. So the function h can be implemented by simulating
its argument, keeping track of the sequence of states, until the simulation
either halts or repeats a state. Needless to say, this would be infeasible
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in practice because of the large amount of time and memory that may be
required.

While the Church-Turing result had important theoretical conse-
quences, and both the lambda calculus and Turing machines are still being
used for a variety of theoretical and practical purposes, the Church-Turing
result itself has little practical significance. There is effectively no differ-
ence between a problem that is undecidable and one that has a very large
computational complexity (e.g., exponential time or even polynomial time
with a high degree).

Programming and Data Languages
Modern programming and data languages often have a class con-

struct. The class construct goes beyond sets in providing structural and
behavioral constituents. As a result, it is generally inappropriate to use set
theory for the design of class hierarchies (Baclawski & Indurkhya, 1994).
Furthermore, there is considerable variation, both syntactically and seman-
tically, for the class construct in different programming languages. As it is
beyond the scope of this article to survey all of this variation, we will only
discuss a few examples.
Programming Languages and Software Engineering

Java is a high-level, class-based, object-oriented programming lan-
guage. Unlike other programming languages such as Python and C++,
Java is exclusively class-based and does not support other programming
paradigms. Consequently, Java is an appropriate language for discussing
the class notion from a theoretical point of view.

Java has a class consisting of all objects, called Object. Since the
class Object is, at least in principle, analogous to the set of everything,
there could be an issue with the consistency of Java.

The easiest way to ensure consistency is to follow the lead of von
Neumann and distinguish between classes and sets. In the case of pro-
gramming languages this would mean distinguishing between classes and
objects. Indeed, early versions of Java did have a sharp distinction between
classes and objects. However, it was found to be useful to be able to treat
classes as objects so that one can manipulate classes like other objects. In
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later versions of Java each class has an object that represents the class,
using a technique called reflection. This would seem to open the possibility
of an inconsistency. However, for Java, as well as for most programming
languages, there is no way to specify that the members of a class should
be exactly the set of objects that satisfy a condition. In other words, there
is no analog of the axiom of unrestricted comprehension in set theory. In-
deed, there is no analog of any kind of axiom of comprehension. So it is
unlikely that there would be any inconsistency due to allowing classes to
be regarded as objects.

As we noted above, the disadvantage of distinguishing classes and
sets in mathematics is that one cannot prove theorems about classes using
set theory. However, one can avoid this problem by adding another layer of
meta-classes that can contain classes, and this layer can have its own the-
ory analogous to set theory. Indeed, one could have yet higher meta levels.
One might think that this would not have any practical applications, but it
does. The Meta-Object Facility (MOF) of the Object Management Group
has multiple meta-layers and is used in software engineering for object-
oriented modeling (MOF, 2019). While the MOF architecture allows for
modeling with two or more layers, the four-layer architecture is the best
known. In this architecture, the lowest layer (M0) consists of data objects,
which are analogous to sets in mathematics. The next layer (M1) consists
of classes that are the basic modeling notion in most object-oriented pro-
gramming languages. The M2 layer consists of metamodels for describing
programming languages. The M2 layer can be used for specifying the data
structures for interpreters and compilers. The highest layer (M3) has a sin-
gle meta-metamodel, called the MOF model, and is used for building the
M2 models that are, in turn, used for building the M1 models that specify
the underlying structures of the data. The MOF model is self-describing
and could be regarded as the software engineering analog of the class of
everything, including the MOF itself.
Data Languages

The Web Ontology Language (OWL) is a family of languages for
authoring ontologies. Ontologies are a formal way to specify classes of
objects and their properties. One of the OWL languages is OWL Full,
which we now examine.
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Unlike programming languages, data language classes can specify
any kind of collection, not just objects represented in the memories of
computers. For example, one could have a class of galaxies that includes
all galaxies that exist or could exist. Furthermore, one can specify that
a class consists of all objects that satisfy some condition. In other words,
these languages satisfy an axiom of comprehension.

In OWL Full the class named Thing includes every possible entity.
So Thing can be regarded as being the class of everything. Accordingly,
OWL Full has an analog of the axiom of unrestricted comprehension. As
with naive set theory, this means that there could be an issue with the
consistency of OWL Full.

One could ensure consistency by sharply distinguishing classes and
their elements. This is the case for most OWL languages, but for OWL
Full it was found to be useful to be able to treat classes as objects so that
one can manipulate them like other objects. Consequently, in OWL Full it
was decided that every class should automatically also be an object. This
technique is called “punning.” This opens the possibility that OWL Full
could have an inconsistency, but I will leave it to others to decide this issue,
if it is decidable at all.

Conclusion
Philosophically, Cantor established that the “actual infinity” that

Aristotle dismissed as being impossible is not only possible but even useful.
Cantor’s diagonal argument plays an important role in mathematical logic
and has also played a role in the development of computers and theoretical
computer science. Mathematics is on a far better foundation as a result
of Cantor. The same can be said about logic and computer science. A
notion of everything is included in many modern programming and data
languages, without any of the controversy that was sparked by Cantor when
he dared to confront the infinite.
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